Network-based real option models
نویسندگان
چکیده
Building on earlier work to incorporate real option methodologies into network modeling, two models are proposed. The first is the network option design problem, which maximizes the expanded net present value of a network investment as a function of network design variables with the option to defer the committed design investment. The problem is shown to be a generalized version of the network design problem and the multi-period network design problem. A heuristic based on radial basis functions is used to solve the problem for continuous link expansion with congestion effects. The second model is a link investment deferral option set, which decomposes the network investment deferral option into individual, interacting link or project investments. This model is a project selection problem under uncertainty, where each link or project can be deferred such that the expanded net present value is maximized. The option is defined in such a way that a lower bound can be solved using an exact method based on multi-option least squares Monte Carlo simulation. Numerical tests are conducted with the classical Sioux Falls network and compared to earlier published results. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملRelative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation
Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملHierarchical Facility Location and Hub Network Problems: A literature review
In this paper, a complete review of published researches about hierarchical facility location and hub network problems is presented. Hierarchical network is a system where facilities with different service levels interact in a top-down way or vice versa. In Hierarchical systems, service levels are composed of different facilities. Published papers from (1970) to (2015) have been studied and a c...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011